Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) Emily spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A container of gasoline that held $1 / 2$ of a liter could fill up $\frac{1}{3}$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A bag of chocolate mix that weighed $1 / 2$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
8) Faye was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
10) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?

Answers

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11.

Solve each problem.

1) A water hose had filled up $\frac{1}{3}$ of a pool after $\frac{1}{2}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
3) Emily spent $1 / 2$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
4) A snail going full speed was taking $1 / 2$ of a minute to move $\frac{1}{3}$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
5) A bag of grass seeds weighed $1 / 2$ of a kilogram. That was enough to cover $1 / 3$ of a front lawn with seed. How many bags would it take to completely cover a lawn?
6) A container of gasoline that held $\frac{1}{2}$ of a liter could fill up $1 / 3$ of a motorcycle gas tank. How many containers would you need to fill up the gas tank entirely?
7) A bag of chocolate mix that weighed $\frac{1}{2}$ of a kilogram could make enough brownies to feed $1 / 3$ of the students at school. How many bags would be needed to feed all of the students?
8) Faye was using a container to fill up a fishbowl. The container held $1 / 2$ of a gallon of water and filled $1 / 3$ of the fishbowl. At this rate, how many containers will it take to fill the fishbowl?
9) A basket of lemons weighed $1 / 2$ of a pound and could make a cup of lemonaide that was $1 / 3$ full. How many baskets of lemons would you need to fill up the entire cup?
10) A discount bottle of perfume was $1 / 2$ of a liter. That was enough to fill $1 / 3$ of a jug. How many bottles of perfume would you need to fill the entire jug?

Answers

1. $1 / 2$ hours
2. \qquad $1 / 2$ hours
3.
4. $1 / 2$ minutes
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
